Mathematics 30-1 Formula Sheet

For
$$ax^2 + bx + c = 0$$
,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Relations and Functions

Graphing Calculator Window Format

$$x$$
: [x_{\min} , x_{\max} , x_{scl}]

$$y: [y_{\min}, y_{\max}, y_{\text{scl}}]$$

Laws of Logarithms

$$\log_b(M \times N) = \log_b M + \log_b N$$

$$\log_b\left(\frac{M}{N}\right) = \log_b M - \log_b N$$

$$\log_b(M^n) = n \log_b M$$

$$\log_b c = \frac{\log_a c}{\log_a b}$$

Growth/Decay Formula

$$y = ab^{\frac{t}{p}}$$

General Form of a Transformed Function

$$y = af[b(x - h)] + k$$

Permutations, Combinations, and the Binomial Theorem

$$n! = n(n-1)(n-2)...3 \times 2 \times 1$$
,
where $n \in N$ and $0! = 1$

$$_{n}P_{r} = \frac{n!}{(n-r)!}$$

$$_{n}C_{r} = \frac{n!}{(n-r)!r!}$$
 $_{n}C_{r} = \binom{n}{r}$

In the expansion of $(x + y)^n$, written in descending powers of x, the general term is $t_{k+1} = {}_{n}C_{k}x^{n-k}y^{k}$.

Trigonometry

$$\theta = \frac{a}{r}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \cot \theta = \frac{\cos \theta}{\sin \theta}$$

$$\csc \theta = \frac{1}{\sin \theta} \qquad \sec \theta = \frac{1}{\cos \theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

$$\sin^2\theta + \cos^2\theta = 1$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

$$\sin(\alpha + \beta) = \sin\alpha \cos\beta + \cos\alpha \sin\beta$$

$$\sin(\alpha - \beta) = \sin\alpha \cos\beta - \cos\alpha \sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$$

$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

$$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

$$\sin(2\alpha) = 2\sin\alpha\cos\alpha$$

$$\cos(2\alpha) = \cos^2\alpha - \sin^2\alpha$$

$$\cos(2\alpha) = 2\cos^2\alpha - 1$$

$$\cos(2\alpha) = 1 - 2\sin^2\alpha$$

$$\tan(2\alpha) = \frac{2\tan\alpha}{1-\tan^2\alpha}$$

$$y = a\sin[b(x - c)] + d$$

$$y = a\cos[b(x-c)] + d$$

SOLUTIONS: Math 30-1 Diploma Prep 2022 Practice Exam

Format I: Choose from several booklets, each focusing on a subset of the exam questions. Perfect for zeroing in on specific areas where you need the most help. Watch out for the question subset to make sure the question you want is present.

Math 30 Diploma Prep: Pre-Calculus 12, Volume 22.1

Question Subset: NR1-3, MC1-5

39 pages

https://www.amazon.ca/dp/B0DQHBQKWX

(Format I)

Math 30 Diploma Prep: Pre-Calculus 12, Volume 22.2

2022 Practice Exam

Question Subset: NR4, MC6-12

45 pages

https://www.amazon.ca/dp/B0DQHBTDJW

(Format I)

Math 30 Diploma Prep: Pre-Calculus 12, Volume 22.3

2022 Practice Exam

Question Subset: NR5, MC13-19

45 pages

https://www.amazon.ca/dp/B0DQH9TD1F

(Format I)

Math 30 Diploma Prep: Pre-Calculus 12, Volume 22.4

2022 Practice Exam

Question Subset: NR6-8, MC20-24

43 pages

https://www.amazon.ca/dp/B0DQJFGBBM

(Format I)

Math 30 Diploma Prep: Pre-Calculus 12, Volume 22.5

2022 Practice Exam

Question Subset: WR1-WR3

53 pages

https://www.amazon.ca/dp/B0DQJH56Z5

(Format I)

Format II: Choose the full set in one comprehensive book, offering solutions to every question in the 2022 exam. Ideal for those looking to master the entire content.

Math 30 Diploma Prep: Pre-Calculus 12, Volume 22

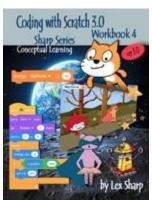
2022 Practice Exam
Question Subset: ALL

179 pages

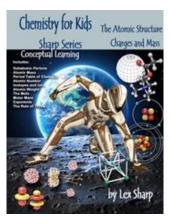
https://www.amazon.ca/dp/B0DQ9H99L3

We kept a copy of this document on our website for your convenience. Our partners help us with funding that allows us to continue to support your learning with free resources. Please support https://sharpseries.ca so we can continue to serve you.

Coding with Scratch Workbooks


Find these books on amazon at:

Volume 1: https://www.amazon.com/dp/17198574X, Volume 3: https://www.amazon.com/dp/1728935458.



Find "Early Math Concepts" on amazon at: https://www.amazon.com/dp/B06X3TFLPM. Find "Chemistry for Kids" on amazon at: https://www.amazon.com/dp/B07BR5FH29.

Find these books at: https://www.amazon.com/dp/1795789166, and https://www.amazon.com/dp/1689213906.