
Extend 14. Consider the function $f(x) = (x + 4)(x - 3)$. Without graphing, determine the zeros of the function after each transformation. (a) $y = f(x)$ (b) $y = f(-x)$ The zeros of the patent base function are $(x+4)=0 \Rightarrow x_1=-4 \Rightarrow (-4,0)$ $(x-3)=0 \Rightarrow x_2=3 \Rightarrow (3,0)$ a) $y = 4f(x)$ A vertical stretch: $(x,y) \Rightarrow (x,4y)$ has no effect on $y=0$. the zeros stay the same $(-4,0) \Rightarrow (-4,4x0) = (-4,0) \Rightarrow (-4,0) $	<u> </u>	021	a1 4							
14. Consider the function $f(x) = (x + 4)(x - 3)$. Without graphing, determine the zeros of the function after each transformation. (a) $y = 4f(x)$ (b) $y = f(-x)$ (c) $y = f(-x)$ (d) $y = f(-x)$ The zeros of the pagent back function are $(x+4)=0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 $	p	, בכש	414							
The zeros of the pacent base function are $(x+4)=0 \Rightarrow x,=-4 \Rightarrow (-4,0)$ $(x-3)=0 \Rightarrow x_2=3 \Rightarrow (3,0)$ a) $y=4f(x)$ $x = x_1 + x_2 + x_3 + x_4 + $		Withouthe fur	ut graphing, action after o	determine th	e zeros of).				
a) $y = 4f(x)$ a verkial stretch: $(x,y) \rightarrow (x,4y)$ has no effect on $y = 0$. i., the zeros stay the same $(-4,0) \rightarrow (-4,4\times0) = (-4,0)$ $(3,0) \rightarrow (3,4\times0) = (3,0)$ the new zeros stayed the same: $(-4,0)$ & $(3,0)$		(b) $y =$ (c) $y =$ (d) $y =$	$f(-x)$ $f\left(\frac{1}{2}x\right)$ $f(2x)$							
a) $y = 4f(x)$ α vertical stretch: $(x,y) \rightarrow (x,4y)$ has no effect on $y = 0$. \therefore , the zeros stay the same $(-4,0) \rightarrow (-4,4\times 0) = (-4,0)$ $(3,0) \rightarrow (3,4\times 0) = (3,0)$ the new zeros stayed the same: $(-4,0)$ & $(3,0)$			he zero	s of the	paren)-n=	Juvetice 2	-4 =	(-4,0)
has no effect on $y=0$. i., the zeros stay the same $(-4,0) \rightarrow (-4,4\times 0) = (-4,0)$ $(3,0) \rightarrow (3,4\times 0) = (3,0)$ the new zeros stayed the same: $(-4,0)$ & $(3,0)$					$(\chi -3)$)=0 =)	$y_j = 3$	(=)	(3,0)	
has no effect on $y=0$. i., the zeros stay the same $(-4,0) \rightarrow (-4,4\times 0) = (-4,0)$ $(3,0) \rightarrow (3,4\times 0) = (3,0)$ the new zeros stayed the same: $(-4,0)$ & $(3,0)$		a) y = 4	t (x)						
has no effect on $y=0$. i., the zeros stay the same $(-4,0) \rightarrow (-4,4\times 0) = (-4,0)$ $(3,0) \rightarrow (3,4\times 0) = (3,0)$ the new zeros stayed the same: $(-4,0)$ & $(3,0)$			ave	rtial st	retch:	(8,4)) -> (x,4y)		
(3,0) \Rightarrow (3,4x0)=(3,0) the new zeros stayed the same: (-4,0) & (3,0) b) $y = f(-x) \Rightarrow (x,y) \Rightarrow (-x,y)$							has	no effe	t on y=	
(3,0) \Rightarrow (3,4x0)=(3,0) the new zeros stayed the same: (-4,0) & (3,0) b) $y = f(-x) \Rightarrow (x,y) \Rightarrow (-x,y)$				-', +	he ze	(05 sta	ry the	same 4.4xc) = (- 4	(0)
b) $y = f(-x) \Rightarrow (x,y) \rightarrow (-x,y)$					((3,0)) (3, 4x0)=(3,	6)
			41	e new ¿	recos.	stayed	the sa	ime; (-4,0) &	t (3,0).
		Ь,) y= =	f(-x)	=)	(x,y) -> ((-x,y)		
2 colainates that are ±0.										nge all

which our "zeroes", a.k.a. roots are like
$(-4,0) \rightarrow (-(-4),0) = (4,0)$
$(3,0) \rightarrow (-3,0)$
The new zeros are: (4,0) & (-3,0)
$(c) g = f(\frac{1}{2} \mathcal{H})$
Huis is a Horiz. Stretch by a factor of $\frac{1}{1} = 1 \times \frac{2}{1} = 2$
$\frac{1}{2} = 1 \times \frac{2}{1} = 2$
$f: (x,y) \to (2x,y)$
$(-4,0) \rightarrow (-4\times2,0) = (-8,0)$ $(3,0) \rightarrow (3\times2,0) = (6,0)$
The new zeros are (-8,0) & (6,0).
d) g = f(2x)
this is a Horiz. Stretch by a factor of

