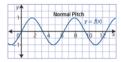
C4 Sound is a form of energy produced and transmitted by vibrating matter that travels in waves. Pitch is the measure of how high or how low a sound is. The graph of f(x) demonstrates a normal pitch. Copy the graph, then sketch the graphs of y = f(3x), indicating a higher pitch, and $y = f(\frac{1}{2}x)$, for a lower pitch.

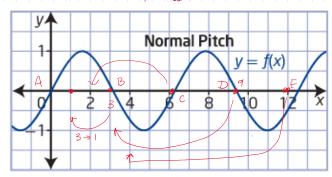


g(x) = f(3x) the higher pitch => the mapping (x,y) > (\frac{1}{3}x,y)

So
$$x: x \to \frac{1}{3}x$$
 and y stays the same

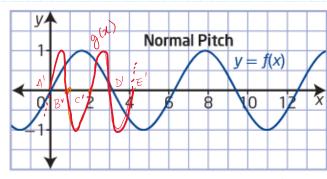
$$0 \to \frac{1}{3} \circ = 0$$
 $6 \to \frac{1}{3} \cdot 6 = 2$
 $3 \to \frac{1}{3} \cdot 3 = 1$ $|2 \to \frac{1}{3} \cdot /2 = 4$

The following shows how points on the x-axis move whe transformation:



the y-s
remain
unchanged,
we are just
compressing
the wave w/
denser x-values.

Next is the actual transformation;



the new pitch g(x) in red.

 $g(x) = f(\frac{1}{2}x)$, the lower pthh. \Rightarrow a horizontal stretch Ho ω do the points move? We must look @ the mapping: $(x,y) \Rightarrow (\frac{1}{2}x,y) = (2x,y)$

Calculate a few points, for ex. the roots:

