

From here it is easy to identify B the remaining points: b' should be an ending point and c' must not. Now with this arrangement we c) can say the reel graph incurred both a vertical & hosizontal stretch, y = f(x)a vertical reflection blc B&c have slipped upside down between A & D, but also A & D have reflected herizontally into the g-axis since their positions is also temped. Again, we proceed withe traditional order: 6 first a next en next and then be 1) b = H. Streth & reflection clearly 6 must 6 negative we count horizontal distances:

Xn to ND: 12 units
χ_{a} , to χ_{b} : 6 units => that is half
Huis is the stretch factor
La Croi
1 1 the state of the
$-\frac{1}{2}$, but the $\frac{1}{2}$
- 1, but this is the mapping, we need the reciprocal in the function definition
Sunction designition
$6 = \frac{1}{2} = 1 \times \left(-\frac{2}{1}\right) = -2$
$\sqrt{b=-2}$
2) a = Vertical Stretch and reflection.
we count vertical distances:
y to ye: 10 units
y, to y,: 5 unil > this is half and
OB OC'
it is the vect. stretch factors
and it must 6 negative
and it must 6 negative to accommodate the reflection
$a = -\frac{1}{2}$
3) Let's see where some of the points went
JI CEI 2 266 WHELE 2011 - 1 1 20 1/11

shifts;

(x,y)->(-\frac{1}{2}\alpha, -\frac{1}{2}\g) so far shifts so fat, & then we can figure out the $A(-4,2) \rightarrow (-\frac{1}{2}(-4), -\frac{1}{2}, 2)$ = (+2)-1) but A is located at (-2,6) that would require additional shifts: (2/-1) -> (2-9) -1+7) A shift & units left d V. Shift 7 11 up. if this was correct, the overall mapping would be $(x,y) \rightarrow (-1x-9, -19+7)$ Let's fest other points to verity this result $D(8,0) \rightarrow D(-1.8-4, -1.0+7)$ =(-4-4,0+7)=(-8,7)

$$= (-4-4, 0+7) = (-8,7)$$

$$+ \text{this is in deed}$$
where $0'$ itsides
so the mapping seems
core at
$$core at$$

$$core at$$

$$core at$$

$$= (-2-4, -2+7) = (-6,5)$$

$$+ \text{this is also indeed}$$

$$+ \text{the point } c'$$

$$\text{So the mapping is correct}$$

$$\therefore a = -\frac{1}{2}, b = -2, b = -4, b = 7$$

$$g(x) = -\frac{1}{2}f(-2(x+4)) + 7$$